
3D OpenGL

The View Pipeline.
Basic 3D programming in OpenGL is just as easy as 2D. We use 2 functions to setup the display

pipeline: gluPerspective() and gluLookAt(). Like the call to gluOrtho2D, the gluPerspective call should

modify the PROJECTION matrix. The gluLookAt() call sets up the view matrix and should be the first

thing in the MODELVIEW matrix. So we set up the pipeline with the following sequence of calls:

 gl.glMatrixMode(GL2.GL_PROJECTION);

 gl.glLoadIdentity();

 glu.gluPerspective(...);

 gl.glMatrixMode(GL2.GL_MODELVIEW);

 gl.glLoadIdentity();

 glu.gluLookAt(...)

Here are the arguments for these calls.

 gluPerspective(fov, aspect, hither, yon)

 fov (field of view) is the vertical angle of view (twice our theta).

 aspect is the aspect ratio (width to heigh) of the viewport

 hither and yon are our clipping planes

 gluLookAt(vx, vy, vz, atx, aty, atz, upx, upy, upz)

 (vx,vy, vz) is the viewer’s position

 (atx, aty, atz) is the lookat point

 <upx, upy, upz> is the up-vector

This is easy to use and quite similar to what you did for HW2. Be careful with the up-vector. Unless you

are doing a flight simulation, you probably want the up-vector to point in the same direction as the

vertical world-coordinate axis. I like to imagine the world like this:

and so I almost always use <0,0,1> as the up-vector.

If you want an otthogonal projection rather than a perspective projection, there is a 3D analog to the

gluOrtho2d() method we used before. This time it is just called glOrtho(). The arguments are

 gl.glOrtho(left, right, bottom, top, hither,yon)

This goes in the PROJECTION matrix, so you do it after a calls to

 gl.glMatrixMode(GL2.GL_PROJECTION);

 gl.glLoadIdentity();

We won’t be using glOrtho() much;

Here is a portion of a typical init() method:

 gl = drawable.getGL().getGL2();

 glu = new GLU();

 gl.glMatrixMode(GL2.GL_PROJECTION);

 gl.glLoadIdentity();

 glu.gluPerspective(60, 1, 0.5f, 200);

 gl.glMatrixMode(GL2.GL_MODELVIEW);

 gl.glLoadIdentity();

 glu.gluLookAt(10, 2, 0, 0, 0, 0, 0, 0, 1);

This has the viewer at (10, 2, 0), looking at the origin, with a 60 degree aperture of vision

Drawing Commands

Drawing works the same in 3D as in 2D; we just need to be sure to give 3D coordinates for polygon

vertices, by using glVertex3f() and glVertex3fv() in place of glVertex2f() and glVertex2fv().

glVertex3f() takes 3 arguments for the x, y, and z coordinates. glVertex3fv() takes 2 arguments: an

array of floats with the x, y, and z coordinates, and an “offset” for where to start in this array, which is

usually 0. Here is a chunk of code that draws a rectangle in the y-z place (all points have x=0) with 0 <=

y <= 10, 0<=z<=10:

 gl.glBegin(GL2.GL_POLYGON);

 gl.glVertex3f(0, 0, 0);

 gl.glVertex3f(0, 10, 0);

 gl.glVertex3f(0, 10, 10);

 gl.glVertex3f(0, 0, 10);

gl.glEnd();

If you want to draw a polyhedron you might start by make an array of all of the vertices, then using

indexes into this array to refer to vertices of particular faces. For example, here are the vertices of a cube:

 float vertices[][] = new float [][] {

 {-1,-1,-1}, {-1, -1, 1}, {-1, 1, -1}, {-1, 1, 1},

 {1, -1, -1},{1, -1,1}, {1, 1, -1}, {1, 1,1}

 };

and here is a pair of drawing methods that make use of this array

 private void polygon(int a, int b, int c, int d) {

 gl.glBegin(GL2.GL_POLYGON);

 gl.glVertex3fv(vertices[a], 0);

 gl.glVertex3fv(vertices[b], 0);

 gl.glVertex3fv(vertices[c], 0);

 gl.glVertex3fv(vertices[d], 0);

 gl.glEnd();

 }

 private void drawCube():

 gl.glColor3f(1, 0, 0); //RED

 polygon(4,6,7,5);

 gl.glColor3f(0, 1, 0); //GREEN

 polygon(6,2,3,7);

 gl.glColor3f(0, 0, 1); //BLUE

 polygon(5, 7, 3, 1);

 gl.glColor3f(0, 1, 1); //CYAN

 polygon(1,3,2,0);

 gl.glColor3f(1, 0, 1); // MAGENTA

 polygon(0, 4, 5, 1)

 gl.glColor3f(1, 1, 0); // YELLOW

 polygon(4,0,2,6);

}

Of course, once you start drawing more than a single polygon, you need to consider the hidden surface

problem. You can tell openGL to use a Z-buffer with

 gl.glEnable(GL2.GL_DEPTH_TEST);

This usually goes into the init() method. In addition, you need to clear the Z-buffer each time you redraw

the scene. The following goes at the start of your display() method, or whatever this method calls to

draw the scene:

 gl.glClear(GL2.GL_COLOR_BUFFER_BIT | GL2.GL_DEPTH_BUFFER_BIT);

There is one additional drawing feature. We can define various quadric surfaces (solutions to

Ax
2
+By

2
+Cz

2
+D=0) For this you need to make a quadric object:

 GLUquadric quad = glu.gluNewQuadric();

We can then use quad to draw various quadric surfaces

 gluSphere(quadricObject, radius, slices, stacks);

This makes a sphere centered at the origin. “Slices” are lines of longitude, from pole to pole. “Stacks”

are lines of latitude, like the equataor.

 gluCylinder(quadricObject, baseRadius, topRadius, height, slices, stacks);

This makes a cylinder aligned with the z-axis, whose base is in the x-y plane. The base and top radii can

be different, so this can make the frustum of a cone. “Stacks” are circles around the z-axis, slices are

vertical lines down the surface.

 gluDisk(quadricObjecdt, innerRadius, outerRadius, slices, rings);

This makes a disk with a hole in it (like a washer) unless you set the innerRadius to 0. It sits in

the x-y plane centered on the z-axis. “slices” are vertical slices through it, “rings” are circles

around it.

 gluPartialDisk(quadricObjecdt, innerRadius, outerRadius, slices, rings, start, angle);

This is just like gluDisk, only the last two arguments specify a pie-shaped wedge (starting at

angle start, extending angle degrees), that is removed fromthe disk. This is here to make for an

easy implementation of Pacman.

Until we talk about lighting models you can’t really use quadric objects, because when flat-

shaded they look like blobs. This seemed like a convenient place to introduce them.

Transformations

OpenGL coding makes a lot of use of transformations, for both design and evaluation. All of the work we

will do with transformations will affect the MODELVIEW matrix, so they should come after you have

executed

 gl.glMatrixMode(GL2.GL_MODELVIEW);

Every time you call one of openGL’s transfomation methods, such as glTranslatef() or glRotatef(), the

appropriate matrix is generated and multiplied times the current matrix (which should be the

MODELVIEW matrix). This multiplication is done so that when we create geometry (perhaps with

glVertex3f) the most recent transformation called is the one first applied to the new geometry. The

MODELVIEW matrix should always start with the View transformation generated by the call to

gluLookAt(), and then it is built up by successive transformations. You may want to have some

transformations that only apply to specific objects. Because first multiplying the MODELVIEW matrix

by T, generating the appropriate geomery, and then multiplying by T
-1

 to remove T and then proceeding is

both slow and awkward, OpenGL provides another way to accomplish the same thing. The system

maintains a stack of the current (MODELVIEW or PROJECTION) matrix values. If you are in

MODELVIEW matrix mode, as you should be when generating geometry,

 gl.glPushMatrix()

pushes a copy of the current MODELVIEW matrix onto the stack; similarly

 gl.glPopMatrix()

pops the top of the current matrix stack into the MODELVIEW matrix. Thus, to apply a transformation

to some new geometry we do the following

 gl.glPushMatrix();

 <code to generate T>

 <code for the new geometry to be affected by T>

 gl.glPopMatrix();

The three transformations we will use are

 gl.glTranslatef(dx, dy, dz)

 which generates a matrix for translating by <dx, dy, dz> and multiplies

 it times the current matrix.

 gl.glRotatef(angle, dx, dy, dz)

 which generates a matrix for rotating about the line through the origin

 parallel to <dx, dy, dz>, rotating around angle degrees. As with the

 other transformations, this matrix is multiplied times the current matrix.

 gl.gScale(dx, dy, dz)

 which scales by <dx, dy, dz> and multiplies this matrix times the current

 matrix

For example, suppose we have a function box() which draws the following box in the y-z plane:

I want to make the following figure:

We get this with

 gl.glPushMatrix();

 gl.glTranslatef(0, 3, 0);

 gl.glRotatef(45, 1,0, 0);

 gl.glTranslatef(0, -0.5f, -0.5f);

 box()

 gl.glPopMatrix()

 gl.glPushMatrix();

 gl.glTranslatef(0, 6, 0);

 gl.glTranslatef(0, -0.5f, -0.5f);

 box()

 gl.glPopMatrix()

 gl.glPushMatrix();

 gl.glTranslatef(0, 9, 0);

 gl.glRotatef(45, 1,0, 0);

 gl.glTranslatef(0, -0.5f, -0.5f);

 box()

 gl.glPopMatrix()

Hierarchical Modeling

Many modeling situations have parts made up of sub-parts that move somewhat independently,

while remaining attached. I can bend my arm at the wrist, elbow or shoulder and all of the

pieces stay together. OpenGL’s transformations are designed to make this kind of modeling

easy. Consider the following picture:

Initially this consists of three horizontal bars, the red bar defined from 1 to 2 on the y axis, green

bar from 2 to 3, and the blue bar from 3 to 4. Here is the code that displays it:

 gl.glColor3f(1,0,0); // RED
 gl.glTranslatef(0, 1, 0.05f); // back to where the bar started
 gl.glRotatef(redTheta, 1, 0, 0);
 gl.glTranslatef(0, 1, -0.05f); //puts the left edge at origin
 <draw the red bar>

 gl.glColor3f(0, 1, 0); //GREEN
 gl.glTranslatef(0, 2, 0.05f); // back to where the bar started
 gl.glRotatef(greenTheta, 1, 0, 0);
 gl.glTranslatef(0, -2, -0.05f); // puts the left edge at origin
 <draw the green bar>

 gl.glColor3f(0, 0, 1); // BLUE
 gl.glTranslatef(0, 3, 0.05f); // back to where the bar started
 gl.glRotatef(blueTheta, 1, 0, 0);
 gl.glTranslatef(0, -3, -0.05f); // puts the left edge at the origin
 <draw the blue bar>

Note that there are no pushes and pops in this code. For the green bar, we translate it to the

origin, rotate it, then translate it back, and then we apply the same transformations that are

applied to the red bar. This is why it stays connected – the left edge of the green bar ends up at

the same location as the right edge of the red bar. The same analysis can be applied to the blue

and green bars.

